New paper accepted in ICPR 2014 – “Compact Signature-based Compressed Video Matching Using Dominant Colour Profiles (DCP)”

The paper “Compact Signature-based Compressed Video Matching Using Dominant Colour Profiles (DCP)” has been accepted in the ICPR 2014 conference http://www.icpr2014.org/, and will be presented in August 2014, Stockholm, Sweden.

Abstract— This paper presents a technique for efficient and generic matching of compressed video shots, through compact signatures extracted directly without decompression. The compact signature is based on the Dominant Colour Profile (DCP); a sequence of dominant colours extracted and arranged as a sequence of spikes, in analogy to the human retinal representation of a scene. The proposed signature represents a given video shot with ~490 integer values, facilitating for real-time processing to retrieve a maximum set of matching videos. The technique is able to work directly on MPEG compressed videos, without full decompression, as it is utilizing the DC-image as a base for extracting colour features. The DC-image has a highly reduced size, while retaining most of visual aspects, and provides high performance compared to the full I-frame. The experiments and results on various standard datasets show the promising performance, both the accuracy and the efficient computation complexity, of the proposed technique.

Congratulations and well done for Saddam.

Analysis and experimentation results of using DC-image, and comparisons with full image (I-Frame), can be found in  Video matching using DC-image and local features   (http://eprints.lincoln.ac.uk/12680/)

 

 

“DC-Image for Real Time Compressed Video Matching” published in Springer Transactions on Engineering Technologies

New chapter titled “DC-Image for Real Time Compressed Video Matching” is published in Springer Transactions on Engineering Technologies 2014 .

Well done and congratulations to Saddam Bekhet.

Best Student Paper Award 2013 – WCE 2013

Congratulations to Saddam Bekhet (PhD Researcher) who achieved the “Best Student Paper Award 2013″  for his conference paper entitled “Video Matching Using DC-image and Local Features ” presented earlier in “World Congress on Engineering 2013“ in London .
Award copy20130704_112542

 

 

Abstract: This paper presents a suggested framework for video matching based on local features extracted from the DC-image of MPEG compressed videos, without decompression. The relevant arguments and supporting evidences are discussed for developing video similarity techniques that works directly on compressed videos, without decompression, and especially utilising small size images. Two experiments are carried to support the above. The first is comparing between the DC-image and I-frame, in terms of matching performance and the corresponding computation complexity. The second experiment compares between using local features and global features in video matching, especially in the compressed domain and with the small size images. The results confirmed that the use of DC-image, despite its highly reduced size, is promising as it produces at least similar (if not better) matching precision, compared to the full I-frame. Also, using SIFT, as a local feature, outperforms precision of most of the standard global features. On the other hand, its computation complexity is relatively higher, but it is still within the real-time margin. There are also various optimisations that can be done to improve this computation complexity.

 

Conference paper presented WCE’13 – 3rd July 2013 – London

The paper (titled “Video Matching Using DC-image and Local Features”) was presented by Saddam Bekhet (PhD Rsearcher) in the International Conference of Signal and Image Engineering (ICSIE’13), during the World Congress on Engineering 2013, in London UK.

Abstract:

This paper presents a suggested framework for video matching based on local features extracted from the DC-image of MPEG compressed videos, without decompression. The relevant arguments and supporting evidences are discussed for developing video similarity techniques that works directly on compressed videos, without decompression, and especially utilising small size images. Two experiments are carried to support the above. The first is comparing between the DC-image and I-frame, in terms of matching performance and the corresponding computation complexity. The second experiment compares between using local features and global features in video matching, especially in the compressed domain and with the small size images. The results confirmed that the use of DC-image, despite its highly reduced size, is promising as it produces at least similar (if not better) matching precision, compared to the full I-frame. Also, using SIFT, as a local feature, outperforms precision of most of the standard global features. On the other hand, its computation complexity is relatively higher, but it is still within the real-time margin. There are also various optimisations that can be done to improve this computation complexity.

 

Well done Saddam.

Conference paper Accepted to the “World Congress on Engineering”

 New Conference paper accepted for publishing in  “World Congress on Engineering 2013“.

The paper title is “Video Matching Using DC-image and Local Features ”

Abstract:

This paper presents a suggested framework for video matching based on local features extracted from the DC-image of MPEG compressed videos, without decompression. The relevant arguments and supporting evidences are discussed for developing video similarity techniques that works directly on compressed videos, without decompression, and especially utilising small size images. Two experiments are carried to support the above. The first is comparing between the DC-image and I-frame, in terms of matching performance and the corresponding computation complexity. The second experiment compares between using local features and global features in video matching, especially in the compressed domain and with the small size images. The results confirmed that the use of DC-image, despite its highly reduced size, is promising as it produces at least similar (if not better) matching precision, compared to the full I-frame. Also, using SIFT, as a local feature, outperforms precision of most of the standard global features. On the other hand, its computation complexity is relatively higher, but it is still within the real-time margin. There are also various optimisations that can be done to improve this computation complexity.