The paper “Compact Signature-based Compressed Video Matching Using Dominant Colour Profiles (DCP)” has been accepted in the ICPR 2014 conference http://www.icpr2014.org/, and will be presented in August 2014, Stockholm, Sweden.
Abstract— This paper presents a technique for efficient and generic matching of compressed video shots, through compact signatures extracted directly without decompression. The compact signature is based on the Dominant Colour Profile (DCP); a sequence of dominant colours extracted and arranged as a sequence of spikes, in analogy to the human retinal representation of a scene. The proposed signature represents a given video shot with ~490 integer values, facilitating for real-time processing to retrieve a maximum set of matching videos. The technique is able to work directly on MPEG compressed videos, without full decompression, as it is utilizing the DC-image as a base for extracting colour features. The DC-image has a highly reduced size, while retaining most of visual aspects, and provides high performance compared to the full I-frame. The experiments and results on various standard datasets show the promising performance, both the accuracy and the efficient computation complexity, of the proposed technique.
Congratulations and well done for Saddam.
Analysis and experimentation results of using DC-image, and comparisons with full image (I-Frame), can be found in Video matching using DC-image and local features (http://eprints.lincoln.ac.uk/12680/)
New chapter titled “DC-Image for Real Time Compressed Video Matching” is published in Springer Transactions on Engineering Technologies 2014 .
Well done and congratulations to Saddam Bekhet.
Paper (PDF): Video Matching Using DC-image and Local Features – WCE2013_pp2209-2214
Video Demos: … soon..
INTRODUCTION:
Videos, especially the compressed ones, became a major part of our daily life. With the amount of videos growing exponentially, Scientists are being pushed to develop robust tools that could efficiently index and retrieve videos in a way similar to human perception of similarity.
*Based on http://www.youtube.com/yt/press/statistics.html
PROBLEM
Congratulations to Dr Amjad Altadmri for completeing his PhD degree. Amjad received his PhD degree in the formal September Graduation Ceremony at the Lincoln Cathedral.
His PhD titled “Semantic Annotation of Domain-Independent Uncontrolled Videos, Incorporating Visual Similarity and Commonsesne Knowledge Bases”. The work produced a Framework for semantic video annotation. In addition, VisualNet was also produced, which is a semantic Network for Visual-related applications.
The photo shows Dr Amjad Altadmri (Left) with his Director of Studies/Supervisor Dr Amr Ahmed ( right).
A list of publications of Amjad’s PhD are below:
Amjad has also participated, with Amr and other members of the DCAPI group, in various workshops especially the V&L EPSRC Network workshops. They presented sessions and showed posters; see related blog posts: